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Biochemistry of Intestinal Development
by Susan J. Henning*

In biochemical terms, the rat small intestine is relatively immature at birth and for the first two postnatal
weeks. Then during the third week a dramatic array ofenzymic changes begins, and by theend ofthe fourth
week the intestine has the digestive and absorptive properties of the adult. Selective examples of these
changes are discussed with emphasis on their implications for toxicological studies. The review also includes
a detailed consideration of the roles of the dietary change of weaning and of glucocorticoid and thyroid
hormones in the regulation of intestinal development.

My aim in this paper is to use the rat as a model
system for a discussion of the postnatal development
of small intestinal function. Factors which affect the
developmental process will be reviewed in terms of
their implications for toxicological studies.

Morphologic Development of the
Intestine
By the time of birth, the intestinal mucosa of the

rat displays a high level of structural development
characterized by villi lined with a single layer of
columnar epithelial cells which have well-defined
microvilli at their absorptive surface (1-3). After
birth, continuous proliferation of epithelial cells oc-
curs only in the lower regions of the crypts (4, 5), and
cells migrate from there onto and along the villi,
eventually being extruded from the tips into the
lumen of the intestine. In adult rats and mice the
generation time for the crypt cells is 10-14 hr (6), and
the transit time along the length of the villus is ap-
proximately 48 hr (7). The characteristics of prolifer-
ation and migration of enterocytes in adult animals
are dealt with in detail in the review by Lipkin (8). In
neonatal rats, generation and migration ofthe cells is
much slower than in adults. Despite the fact that the
neonatal villi are shorter, the transit time is at least%
hr (7, 9). During the third postnatal week there are
significant changes in both cell kinetics and mor-
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phology leading to the more rapid proliferation and
the longer villi and crypts that are characteristic of
the adult animal (9).

In both neonatal and adult animals, the crypt-
villus unit is a classical example of a system wherein
proliferation precedes differentiation. The epithelial
cells of the villus have many specialized enzymatic
functions concerned with the precesses of digestion
and absorption (10, 11). In contrast, the progenitor
cells of the crypt have none of these specialized
activities, but, as would be expected of proliferating
tissue, they contain high activities of various en-
zymes involved in the synthesis of DNA (12, 13).
Many of the specialized functions of the villus cells
are associated with the luminal surface, i.e., with the
microvilli.
The continuous renewal of the intestinal

epithelium adds a degree of complexity to develop-
mental studies with this organ. When dealing with
the development ofmost other organs, one considers
the change with time of the enzymatic properties ofa
stable population of cells. For example, in rat liver,
the same cells that have high activity of ATP-citrate
lyase and low activity of tryptophan oxygenase at
birth, have these enzymatic patterns reversed by the
time of weaning (14). In contrast, in the intestine,
there are two ways in which enzyme patterns can be
changed: by changes in a given population of entero-
cytes within their brief life-span and by simple re-
placement of one type of cell by another type from
the proliferating pool. In a later section, evidence
will be presented that it is the latter mechanism
which is operative in the ontogenic changes that
occur during the third week of life.
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Biochemical Development of the
Intestine
Biochemically, the rat intestine is relatively im-

mature at birth and for the first two postnatal weeks,
then during the third and fourth weeks undergoes a

dramatic array of functional changes. It is conve-

nient to discuss the changes in two broad categories.

Activities Which Are High at Birth, Then
Decline
One of the most striking features of the neonatal

rat intestine is its ability to absorb intact mac-
romolecules, including proteins (15-17), by the pro-
cess of pinocytosis (18-20). The capacity for
pinocytosis appears in the rat intestine by day 19 or

20 of intrauterine life (21, 22), remains high during
the first two weeks of suckling, and then decreases
markedly towards the end of the third week (18, 19,
23). Correspondingly, the proteolytic enzymes from
the stomach and the pancreas which are low during
the first two weeks of extrauterine life, increase sig-
nificantly during the weaning period (19, 24, 25).
The absence ofthe adult mode ofluminal digestion

of protein in the neonatal rat and the presence of
pinocytic capacity provides an explanation for the
absorption of intact immunoglobulins during the
suckling period (16, 26). On the other hand, since the
developmental pattern of pinocytosis correlates with
that for certain lysosomal enzymes (23, 27), it has
been suggested (23) that the process of pinocytosis
allows intracellular digestion of macromolecules
during the period in which the mechanisms for ex-

tracellular digestion have not yet matured. This is
not consistent with pinocytosis being important for
the transfer of passive immunity to the newborn
unless immunoglobulins are selectively protected
from the action of lysosomal hydrolases. Various
models to explain such selectivity have been pro-
posed (28-30), and recent evidence (31) supports one
of these models (29), namely that immunoglobulins
are absorbed predominantly in the jejunum where
lysosomal activity is low, whereas other proteins are
absorbed and digested in the ileum where lysosomal
activity is high.
ITwo points of relevance to toxicology are illus-

trated here. First, for both the adult intestine and the
infant intestine, one should always remain open to
the possibility that different regions may have quite
different biochemical characteristics. Second, dur-
ing the developmental period, proteins (and any

ligands which may be bound to them) have direct
access to intestinal epithelial cells as a result of
pinocytosis.

In terms of digestive capacity, the neonatal rat
intestine has hydrolytic activities which are specific
for, and restricted to, the components of maternal
milk. This is demonstrated very nicely by a consid-
eration of carbohydrate digestion. Milk is relatively
low in total carbohydrates, and the carbohydrates
present are those not generally found in adult diets.
The major carbohydrate-in the milk ofmost placental
mammals is lactose (32), and high activities of its
disaccharidase, lactase, are found in the intestinal
mucosa of the suckling animals (33-35). In the rat,
lactase is detectable on day 18 of gestation, has
maximal activity during the first week after birth,
and then begins to decline, reaching adult values by
the end of the fourth week (36). Many other species,
including the human, have lower lactase activity in
the adult than the newborn (34), and accordingly,
show an inability to utilize ingested lactose in the
postweaning period (35).
While lactose is the major carbohydrate received

by the suckling mammal, the milks of various species
are also known to contain sialic acid. Very interest-
ingly, the digestive enzyme for this component,
namely neuraminidase, has recently been found to
have an ontogenic profile very similar to that of
lactase (37).

Activities Which Are Absent or Low at Birth,
Then Appear and/or Increase

Various disaccharidases (maltase, isomaltase,
sucrase, and trehalase) fall into this category and
thus their developmental patterns are in direct con-
trast to that of lactase. Maltase has low activity dur-
ing the first two postnatal weeks then undergoes a 5-
to 10-fold increase during the next two weeks (38,
39). For sucrase, isomaltase, and trehalase, the
transition is even more sudden. These enzymes can-
not be detected in the intestine during the first and
second postnatal week, but their activities appear on
approximately day 16 and rise rapidly, reaching adult
levels by the end of the fourth week (3840). These
developmental changes in the nature of the disac-
charidase activities of the intestine clearly have
physiological significance in allowing the young
animal to make the dietary change from lactose as
the major carbohydrate during suckling, to maltose,
isomaltose and sucrose as the major disaccharides
after weaning (41). The temporal relationship be-
tween the developmental rise of sucrase activity and
the process of weaning can be seen in Figure 1. The
possibility of a casual relationship between these two
phenomena is discussed in a later section.

In addition to the disaccharidases, there are vari-
ous other hydrolytic enzymes of the intestine which
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cause of the various enzymic and morphologic
changes that occur in the intestine during the third
postnatal week. We have shown (Fig. 2) that when
weaning is prevented, the appearance of sucrase ac-
tivity in thejejunum is not delayed. Conversely, oral
administration of sucrose to 12-day-old rats has no

effect on the developmental pattern for sucrase (39).
If sucrose is administrated by gastrostomy to suck-

ling rats, precocious increase of sucrase is observed;
however, since this does not occur if the animals
have been previously adrenalectomized, it is proba-
bly a stress response, rather than a dietary response
(41). The same comment applies to the precocious
appearance of sucrase, maltase and alkaline phos-

. . s}. phatase following early weaning (49). Prolonged
15 20 25 Adult suckling does not delay the usual decrease in the
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the timing of the ontogenic events. The case of su-

iental patterns. Many work- crase development is particularly interesting. Figure
narked increase in duodenal 2 shows that although the timing ofthe appearance of
ctivity which occurs during jejunal sucrase is not affected by prevention of
rats and mice (34). Much of weaning, the activity at which the enzyme plateaus

loog on the development of (days 25 and 27) is approximately half that seen in
control (weaned) animals. Since in adult rats, jejunal
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tion. Peptidases of the rat and mouse intestine also
show marked increases during the third week of life
(43, 47).

Regulation of Intestinal
Development
Role of Diet
The possibility of dietary influence over the regu-

lation of intestinal development is an obvious one

considering the temporal correlation between the
major enzymic changes in the intestine and the onset
of weaning (Fig. 1). In terms of nutrition, weaning
represents a transition from a high-fat, low-carbo-
hydrate diet, and from a diet whose sole disaccharide
is lactose to one in which the major disaccharides are
sucrose and maltose. It is clear, however, that this
dietary change cannot be considered the primary
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FIGURE 2. Effect of weaning-prevention on sucrase development
for (-) four control litters raised in the regular manner and (A)
four experimental litters raised on a schedule which prevented
weaning. One pup from each litter was removed for sucrase

assay every second day from days 13-27 inclusive. Results are

given as mean + SEM (n = 4) and are taken from Henning and
Sims (48).
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Another adult characteristic that appears during
the fourth postnatal week is the occurrence of a
diurnal rhythm of enzyme activity. Our results for
sucrase are shown in Fig. 3. At 19 days this enzyme
shows arrhythmic variation when studied ever 3 hr
during a 24 hr period, whereas by day 22 a distinct
rhythm with a nocturnal peak has developed. If ani-
mals are prevented from weaning, the sucrase
rhythm does not appear at this time (55).
Here again, in relation to toxicological studies,

there are two important points. Firstly that, although
diet seems to have little influence on intestinal
biochemistry during the suckling phase, from the
weanling phase onward dietary changes may have
dramatic effects on the enzymology of this tissue.
Secondly that, at least from day 22 onward, signifi-
cant diurnal variations may be present, thus making
the timing of experiments (with respect to the light
cycle) a variable that must be critically controlled.

Role of Hormones
There is now a great deal of evidence suggesting

that glucocorticoids are primarily responsible for the
various intestinal changes that occur in the rat and
mouse at weaning (29, 43). Administration of
glucocorticoids to suckling rats or mice causes pre-
cocious increases in the activities of sucrase (40, 56,
57), maltase (56, 58), trehalase (56), amino peptidase
(43, 56), and alkaline phosphatase (42), as well as
precocious disappearance of various lysosomal
hydrolases (59), and the capacities for pinocytosis
(15, 19, 60) and for the absorption of intact immuno-
globulins (19, 61). Conversely, it has been shown
that if animals are adrenalectomized during the sec-
ond postnatal week, the usual decrease of
pinocytosis (62) and increase ofalkaline phosphatase
(42) and sucrase (63) activities are largely prevented.
On the other hand; the sucrase activity of adult rat
jejunum is apparently independent of gluco-
corticoids, since here it is not decreased by adren-
alectomy, nor increased by administration of
glucocorticoids (53). Figure 4 shows that this adult
characteristic of glucocorticoid-independence ap-
pears on day 17-18, i.e., very soon after the sucrase
rise begins. Similar results have been reported for
alkaline phosphatase in mouse duodenum (42).
Thus, with respect to these two enzymes, glucocor-
ticoids seem to be required only for the initiation of
the developmental changes, not for their mainte-
nance. The question of whether or not the pattern of
glucocorticoid involvement is common to all the
changes that occur in the intestinal mucosa in the
third postnatal week remains to be investigated. The
possibility that the intestine abruptly loses its sen-

II DEVELOPMENT OF THE DIURNAL RHYTHM OF JEJUNAL SUCRASE
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FIGURE 3. Development of the diurnal rhythm ofjejunal sucrase
activity: (0) the normal developmental pattern for sucrase
activity measured in the morning (54); (-) sucrase activity
measured every 3 hr beginning at 0830 hr on postnatal days 19,
22, and 27 (5S). Open bars indicatd the light period and hatched
bars indicate the dark period.

sitivity to certain toxic substances at this time is
equally intriguing.

In an earlier section it was pointed out that there
are two possible mechanisms by which enzymic
changes of the intestinal epithelium could occur: by
alteration of the enzyme levels in the differentiated
cells that are present on the villi, or by replacement
ofone population of villus cells by another which has
altered enzymology. There is now considerable evi-
dence to indicate that it is the latter method which is
operative in the various postnatal changes that are
observed in the rat intestine. When the distribution
of sucrase along the length of the crypt-villus unit
after glucocorticoid administration to 9-day-old rats
was studied by cryostat sectioning of the intestine
(Fig. 5), it was found that 24 hr after administration of
the steroid, no sucrase activity was detectable on the
villi but a very small amount was present at the
mouths of the crypt. By day 11 this activity had
increased and had extended along the lower halves of
the villi. The process continued and by day 13 suc-
rase activity had reached the tips of the villi and the
pattern through the whole depth of the mucosa was
very similar to that for adult animals (11).
These results indicate that the ability of hydro-

cortisone to cause precocious appearance of sucrase
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FIGURE 4. Effect of adrenalectomy on sucrase development. At

each age indicated, a full litter of nine pups was used as
follows: (0) five pups were subjected to bilateral adrenalec-
tomy; (O) four pups were sham-operated. Pups were killed 5
days after surgery andjejunal sucrase was assayed. Results are
given as means +- SEM. Differences between adrenalec-
tomized and control groups were statistically significant (p <
0.001) when surgery was performed on days 15, 16, and 17, but
NS (p > O.5) when surgery was performed on Days 18 and 21.
Figure is from Henning and Sims (48).

is mediated via the cells of the crypt. The cells that
are on the villi at the time of administration are
apparently unaffected by the hormone. The rate at
which the enzyme activity appeared at the base of
the villi and then spread along the lengths of the villi
correlated with. reported migratory rates for the
epithelial cells (7, 64).

Similar results for the pattern of sucrase appear-
ance have been obtained by other workers both by
cryostat sectioning (6;4) and by fluorescent antibody
techniques (65). It is postulated that the same series
of events occurs when endogenous glucocorticoids
participate in the normal appearance of sucrase dur-
ing the third postnatal week. These suggestions are
supported by studies (23, 60) which have shown that
during both the normal and the precocious loss of
pinocytic capacity from the jejunum, pinocytosis
does not decrease in enterocytes already present in
the villi, but rather these cells are gradually replaced
by new ones from the crypts that do not engage in
pinocytosis.

In view of the effects of adrenalectomy and
gluococorticoid administration during the suckling
period, glucocorticoids have generally been re-
garded as being the normal cue for the developmen-
tal changes that occur in the intestine during the third
and fourth postnatal weeks (29, 34, 43). However the
problem with this supposition has been that the
majority of the reported values for plasma cortico-
sterone during development are uniformly high from
the second through the third postnatal week (66-70).
We raised the question of why the high concen-
trations of endogenous corticosterone did not elicit
intestinal changes during the second week of life and
proposed (57, 71) that the timing of glucocorticoid
action in this system must reflect increased respon-
siveness of the target cells at the beginning of the
third postnatal week. However, when the cytoplas-
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FIGURE 5. Appearance of sucrase at various cytological depths of

the mucosa after administration ofhydrocortisone to 9-day-old
rats. A piece ofjejunum was taken for cryostat sectioning and
then sucrase activity was measured in homogenates prepared
from sections from the various levels of the mucosa. The
results for each animal are plotted against the proportional
depths ofthe total mucosa with the top ofthe villi at O%o and the
bottom of the crypts at 100o. The concurrent histological
examinations indicated that there was not an abrupt change
from pure villi to pure crypts. Sections between 70 and 90%o of
the total depth always contained a mixture of both villi and
crypts. From Henning et al. (57).
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mic receptors for glucocorticoids in the jejunum
were assayed throughout the developmental period
they were found to be present in higher concen-
trations during the first and second postnatal week
than during the third week (71), thus failing to pro-
vide a basis for increasing responsiveness.
Since circulating concentrations of thyroxine are

known to increase considerably between postnatal
days 10 and 16 (72-75) we have investigated the pos-
sibility that this hormone synergizes with glucocor-
ticoids and thereby explains the timing of the
glucocorticoid-mediated changes in the intestine
(76). The data indicate that thyroxine plays no role in
the timing of the developmental appearance of suc-
rase activity, although it does have an important
permissive effect in determining the slope of the
developmental rise of sucrase activity.

Before pursuing other factors which might ac-
count for the timing of endogenous glucocorticoid
action on the small intestine during development, we
decided to re-examine the ontogeny of plasma cor-
ticosterone (54). All previous developmental studies
of this hormone had measured its total plasma con-
centration. However, a large proportion of the total
is bound to plasma transcortin and only the free
fraction is biologically active (77, 78). When the de-
velopmental pattern of free corticosterone is plotted
together with sucrase and lactase activities of the
same animals (Fig. 6) it can be seen that the hormone
concentration begins to rise approximately two days
before the enzymic changes begin. In view of earlier
demonstrations (57, 64) that glucocorticoid effects
are mediated by the crypt cells but are not detected
until those cells leave the crypts and migrate out the
villi, the timing of the surge of free corticosterone
(Fig. 6) strongly suggests that it initiates the enzymic
changes that occur in the small intestine during the
third and fourth postnatal weeks.
An important corollary of these studies with

plasma corticosterone is that stress may elicit sig-
nificant changes in intestinal biochemistry during the
developmental period. Although the hypothala-
mus-pituitary-adrenal axis is quiescent from day 3
through day 10 (67, 68, 70), between days 11 and 18,
stress-induced elevation of plasma corticosterone
can be expected to cause precocious maturation of
intestinal function. The stress effect of administering
nutrient by gastrostomy has already been mentioned
(41). More recently, it has been shown that the ef-
fects of premature weaning are in fact due to the
adrenal stress response to starvation (79). The stress
effects of drugs, surgery and sickness during the
developmental period have not been systematically
studied, but would be certainly predicted to cause
precocious maturation of the small intestine.

In summary, the first month of postnatal develop-
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ment in the rat is characterized by marked changes in
intestinal biochemistry. The gluococorticoid hor-
mones and the thyroid hormones have important
influences on these changes. In the case of the
glucocorticoids there is a relatively short period
during which they are active: namely, between day
14, when the rise of available hormone begins, and
day 17-18, when tissue sensitivity to these steroids is
lost. This pattern, together with the demonstration
that glucocorticoids act selectively on crypt (as op-
posed to villus) epithelial cells, may have important
implications for toxicological studies ofthe intestine.
Likewise the appearance of diurnal rhythms and
dietary dependence of digestive enzymes during the
fourth postnatal week are useful pointers for controls
that must be considered in investigations of the in-
teractions of toxic substances with intestinal tissue.

This work was supported by Grant HD 10042 from the National
Institutes of Health.
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